
Journal of Fluids and Structures (2000) 14, 1071}1088
doi:10.1006/j#s.2000.0308, available online at http://www.idealibrary.com on
ADDED MASS AND OSCILLATION FREQUENCY
FOR A CIRCULAR CYLINDER SUBJECTED TO

VORTEX-INDUCED VIBRATIONS AND
EXTERNAL DISTURBANCE

K. VIKESTAD

MARINTEK A/S, P.O.Box 4125 Valentinlyst
N-7450 Trondheim, Norway

J. K. VANDIVER

Department of Ocean Engineering, Massachusetts Institute of Technology
Cambridge, MA 02139, U.S.A.

AND

C. M. LARSEN

Department of Marine Structures, Norwegian University of Science and Technology
N-7491 Trondheim, Norway

(Received 12 February 1999, and in "nal form 12 May 2000)

This paper reports results from an experiment with a lightly damped elastically mounted rigid
cylinder subjected to constant #ow velocity. The cylinder was allowed to vibrate in the
cross-#ow direction and was "xed in the #ow direction. The Reynolds numbers varied from 104
to 6]104. The added mass for the freely vibrating cylinder agreed well with the results found by
others in driven cylinder tests. The predicted natural frequency based on the measured added
mass was approximately equal to the measured mean oscillation frequency. The added mass
calculated from one oscillation cycle to the next varied considerably. The oscillation frequency
from one oscillation to the next corresponded to the natural frequency including the added
mass for the same cycle. By movement of the attachment point of the elastic members to the
external structure a disturbance could be added to the normal vortex-induced vibrations (VIV)
response. When an external disturbance was introduced at a frequency other than the VIV
frequency, the added mass coe$cient was found to be weakly in#uenced by the external
harmonic disturbance. ( 2000 Academic Press
1. INTRODUCTION

THE PREDICTION OF THE RESPONSE FREQUENCIES of #exible marine risers in sheared #ows is
important in the estimation of fatigue damage rates. Response frequencies depend on both
the natural frequencies of the structure and the distribution of vortex-shedding frequencies
along the riser. The natural frequencies depend on the added mass distribution along the
riser. The excitation frequency components depend on the velocity pro"le and local cylinder
motion. The local cylinder motion typically has many frequency components. Little is
known about the e!ect of multiple frequency motion components on added mass coe$-
cients or excitation force amplitudes and frequencies. The experiments described in this
0889}9746/00/101071#18 $35.00/0 ( 2000 Academic Press



1072 K. VIKESTAD E¹ A¸.
paper were intended to begin the investigation of vortex-induced vibration (VIV) in
a multiple frequency environment.

A preliminary estimate of the response frequency of an elastically mounted cylinder
excited by vortex shedding may be based on knowledge of the Strouhal number (St) where
the estimate of the vortex-shedding frequency, f

s
is given by

f
s
"St

;

D
; (1)

; is the #ow velocity and D is the cylinder diameter. The Strouhal number for "xed
cylinders is approximately 0)2 for a wide range of subcritical Reynolds numbers (Re)
between 103 and 105. For 105(Re(2]106 the Strouhal number generally increases, but
with wide variations in the data.

For cylinders elastically mounted in the cross-#ow direction, the vortex-shedding fre-
quency may be altered by the lock-in phenomenon in which resonant motion of the cylinder
at its natural frequency controls the frequency of vortex shedding.

In the sub-critical Reynolds number range, this often leads to a lower vortex-shedding
frequency than that for a "xed cylinder.

The relationship between VIV response and the system natural frequency is re#ected in
another dimensionless parameter, the reduced velocity (;

r
) given by

;
r
"

;

f
n
D

. (2)

The complication which arises in the use of this parameter is that the natural frequency ( f
n
)

is not constant but depends upon the #uid added mass of the cylinder. The oscillation
frequency, and thereby probably also the added mass, is known to be dependent on the
reduced velocity for small mass ratio cylinders (Sarpkaya 1979). This leads to a circular
problem which is most commonly resolved by "xing the de"nition of the natural frequency
when computing the reduced velocity. In this paper, the reduced velocity is based on the
value of the natural frequency measured in still water, and corresponds to an added mass
coe$cient of 1)04.

In this paper the, relationship between added mass and response frequency is investigated
for an elastically mounted cylinder in #uid #ow. Experimental results are presented which
reveal that, even under uniform #ow conditions, there are signi"cant cycle-to-cycle vari-
ations in added mass and vibration period. It is also shown that the added mass is
in#uenced by the addition of cylinder motion components at frequencies which are di!erent
from the natural vortex-induced vibration response. This results in cylinder motion with
more than one-frequency component. Knowledge of added mass in a multi-frequency
environment is important for predicting multi-mode VIV response of risers and cables in
sheared #ow.

2. DESCRIPTION OF THE EXPERIMENT

2.1. THE APPARATUS

The experimental apparatus is shown in Figure 1. The 2 m long and 10 cm diameter rigid
cylinder was horizontally mounted in a hinged framework. The intention was that the
cylinder should be able to have translatory motion in the cross-#ow direction, but be
restrained from motion in other directions. The structural damping was kept as low as
possible by using ball bearings in the hinges. End-e!ects were minimized by means of
end-plates. The diameter of the end-plates was "ve times the cylinder diameter. The mass



Figure 1. Schematic drawing of the experimental apparatus.
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ratio m/oD2"1)3 includes the e!ect of all moving parts of the system. The mass ratio was
intended to represent realistic marine risers and therefore both the framework and the test
cylinder were made of aluminium. The #ow was in the stable sub-critical regime, Re from
103 to 105. The properties of the apparatus are given in Table 1. The upper spring support
was connected to a "xed displacement scotch yoke oscillator. The oscillator gave the
support an harmonic motion with a speci"ed amplitude and frequency. The damping ratio
was found by averaging the results from several decay tests. The apparatus was placed on
a carriage in a 25 m long]2)5 m wide towing tank at NTNU, Trondheim. The mean
position of the cylinder was 0)6 m below the surface in the 1)2 m deep tank. The carriage
motor was controlled by a variable frequency power supply and gave the carriage an
acceleration of approximately 0)6 m/s2. For a reduced velocity of 6 (;

r
";/( f

0
D)), based

on the natural frequency in still water, constant #ow velocity was reached in 1
4

of a natural
period. A thorough description of the experiment is found in Vikestad (1998).

2.2. EXPERIMENTS CONDUCTED

In this paper results from two kinds of experiments are given.

(i) No support excitation: An elastically mounted cylinder was towed without support
excitation.;

r
was varied from 2)8 to 13)2 with 23 di!erent reduced velocities. Each series of

tests was done three times to check the repeatability. In this paper the three series are named
First, Second, and Third when referred to. The "rst series was done before the external
excitation tests, and the third series was done after.

(ii) =ith external excitation: At the same reduced velocities as above, the cylinder was
subjected to a support motion. Three di!erent support amplitudes (2, 4, and 6 cm) were
used, combined with 12 di!erent frequencies, varying from approximately 0)5 f

0
to 2)0 f

0
.

The total number of runs for this case was 828 (23 velocities]3 support amplitudes]12
support frequencies"828).



TABLE 1

The properties of the apparatus

Cylinder length ¸ 2)00 m
Cylinder diameter D 10)0 cm
Total sti!ness k

505
415 N/m

Sti!ness of oscillator support k
2

266 N/m
Cylinder volume <

#:-
0)0157 m3

Natural frequency in air f
!*3

0)634 Hz
Natual frequency in still water f

0
0)497 Hz

E!ective dry mass m 26)12 kg
E!ective wet mass 42)5 kg
Added mass coe$cient at f

0
1)04

Mass ratio 1)306
Speci"c gravity 1)664
Damping ratio, f"c/c

#3*5
)

in air 0)07}0)1 %
in water, no cylinder 0)7}1)0 %
in water with cylinder
(Amplitude/D)(0)25 1)5 %
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The results of each experiment were time series of cylinder displacement, acceleration,
and total cylinder end forces. The #uid force on the cylinder in the cross-#ow direction (F

v
)

was found by removing the part due to inertia of the cylinder from the measured forces at
the end of the cylinder.

For the experiments with support motion, time series for the support displacement,
acceleration, and spring force were also found.

3. CALCULATION OF ADDED MASS

The oscillatory system can be described by the dynamic equilibrium equation

mxK#cx5 #k
505

x"F
v
(t)#k

2
y (t), (3)

where m is the dry mass of the cylinder, and c the structural damping coe$cient; F
v
is the

cross-#ow component of the total hydrodynamic force, x is the cylinder motion, and y is the
motion of the support system. If the response is assumed to be periodic with a principal
harmonic x (t)"x

0
sin (ut), we may assume that the principal harmonic component of F

v
is

given by F
v
"F

0
sin(ut#/). Using the known properties

F
0
sin (ut#/)"F

0
cos/ sin (ut)#F

0
sin/ cos (ut), (4)

this #uid force may be split into two components, one in phase with the cylinder acceler-
ation and the other with velocity:

Am#

F
0
cos/

u2x
0
BxK#Ac!

F
0
sin/

ux
0
Bx5 #k

505
x"k

2
y (t). (5)

Using the relationships

lim
T?=

:
t
t`TF

v
xR dt

¹

"

1

2
ux

0
F
0
sin/ (6)
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and

lim
T?=

:
t
t`TF

v
xK dt

¹

"!

1

2
u2x

0
F
0
cos/, (7)

equation (5) can be written as

Am! lim
T?=

2

¹ (u2x
0
)2P

t`T

t

F
v
xK dtBxK

#Ac! lim
T?=

2

¹(ux
0
)2P

t`T

t

F
v
x5 dtBx5 #k

505
x"k

2
y (t). (8)

The xK term in equation (8) provides a means of estimating the added mass coe$cient from
experimental data. An approximation to the averaging integral in equation (8) is found by
integrating over an integer number (n) of oscillation periods. The added mass coe$cient (C

a
)

may be estimated from

C
a
"!

8

n¹onD2¸ (u2x
0
)2P

t`nT

t

F
v
xK dt. (9)

For the runs without support motion, equation (9) was used both for calculating an average
C

a
over many periods and for calculating a time-dependent C

a
, by averaging over a se-

quence of single periods.
For the runs with support motion the experimental data were "ltered into two frequency

regimes:

(i) a narrow band around the support motion frequency; This is de"ned as support-
induced motion, whether or not it controlled the vortex-shedding frequency;

(ii) all frequencies outside the band centered on the support motion frequency; Since this
was not oscillation due to support motion, it was de"ned as vortex-induced vibration, VIV.

The use of equation (9) is demonstrated in Figures 2 and 3. Figure 2 is the time series for
cylinder acceleration. Figure 3 presents the product of the cylinder acceleration and the
total hydrodynamic force in the cross-#ow direction for one of the three tests with;

r
"8)0.

When the product F
v
xK is positive, the added mass coe$cient is negative, according to

equation (9). Figure 3 clearly shows that the added mass coe$cient is not constant, as this
product changes from positive to negative values. The acceleration amplitude u2x

0
as used

in equation (9) was found from the measured root-mean-squared (r.m.s.) value of acceler-

ation multiplied by J2.

4. RESULTS AND DISCUSSION

4.1. MEAN ADDED MASS FOR VIV WITHOUT SUPPORT MOTION

The added mass coe$cient estimated using equation (9) as a function of reduced velocity is
given in Figure 4(a). The "gure shows the results for the three repeated series of tests and
clearly illustrates that the results are reproducible. The added mass coe$cient equals 1)0 for
;

r
close to 5)5, and 0)0 for;

r
near 8. For higher reduced velocities, C

a
(0)0. In Figure 4(b)

the sloped line of data points are the mean oscillation frequency normalized by the still
water natural frequency, plotted against the reduced velocity. The mean oscillation fre-

quency is found from J(xK
3.4

/x
3.4

)/(2n). There is no evidence that the oscillation frequency is
locked-in to one "xed natural frequency as has been frequently seen from experiments with
very high mass ratio, e.g. in air.



Figure 2. Cylinder acceleration versus time for ;
r
"8)0, no support motion.

Figure 3. Total hydrodynamic force in cross-#ow direction multiplied by the cylinder acceleration versus time
for ;

r
"8)0 (same run as Figure 2, no support motion). This is the F

v
xK term in equation (9).
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In fact, over a wide range of reduced velocities the oscillation frequency is the true natural
frequency f

n
(;

r
), where we de"ne the true natural frequency as

f
n
(;

r
)"

1

2nS
k
505

m#o<
#:-

C
a
(;

r
)
.

(10)

This is illustrated by the horizontal line of data points in Figure 4(b) which is the measured
oscillation frequency divided by f

n
(;

r
). In other words, the added mass coe$cient decreases

monotonically with reduced velocity, resulting in a natural frequency which increases with
reduced velocity, as reported by numerous papers (Anand 1985; Kozakiewicz et al., 1994;
Sumer & Freds+e 1997).



Figure 4. (a) Added mass and (b) frequency results for towing without support excitation. Speci"cally, (b) shows the
mean oscillation frequency divided by natural frequency in still water (0)497 Hz) (sloped lines) and the mean
oscillation frequency divided by the true natural frequency using the added mass from Figure 4(a) corresponding to

the given reduced velocity (the horizontal lines).
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This has the consequence that low mass ratio cylinders have lock-in regions that extend
over a broader range of #ow speeds than do high mass ratio cylinders as described in
Vandiver (1993). This e!ect is illustrated in Figures 4(a) and 4(b). In Figure 4(a) the added
mass coe$cient is shown to decrease as the reduced velocity increases. In this paper,
reduced velocity is de"ned in terms of a "xed natural frequency; in this case that was
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measured in still water. Once lock-in commences, at approximately;
r
"4, then the natural

frequency of the cylinder increases with increasing reduced velocity, enabling lock-in to
persist, in this case up to approximately ;

r
"12, because the mass ratio is quite low

(m/oD2"1)3). High mass ratio cylinders have much narrower lock-in ranges, because the
variation in added mass results in a smaller increase in the natural frequency. If reduced
velocity were de"ned in terms of the true natural frequency, then cylinders with di!erent
mass ratios would appear to have similar width lock-in regions extending from approxim-
ately 5}8 in reduced velocity. However, for purposes of reporting experimental data, it is
better to express reduced velocity using a "xed value of natural frequency. Variability of the
oscillation frequency with reduced velocity was also shown by Anand (1985) in his doctoral
thesis. Using higher mass ratio (m/oD2"4)5) the oscillation frequency did not vary as much
as shown in the present investigation.

The net power loss due to friction was very low in these experiments and the results may
be compared with other lightly damped systems such as Gopalkrishnan (1993). Lift
coe$cients and added mass coe$cients from his study are plotted in Figure 5 as a function
of nondimensional frequency ratio, de"ned as f K"f

04#
D/;. His results were obtained from

a forced oscillation experiment. The results may be compared to the results presented in this
paper under similar conditions of lift force. Since the damping was very small in our
experiments, then at dynamic equilibrium the lift coe$cient in phase with velocity is very
small. This condition is approximated by the zero lift coe$cient contours in Figure 5(a). We
have transferred this contour to the added-mass plot in Figure 5(b). From this we can
extract added mass coe$cients at each value of frequency ratio along the zero lift coe$cient
contour. We must also convert the frequency ratio f K to reduced velocity de"ned with
a constant natural frequency as observed in still water. This was done by inserting into
equation (11) the added mass values taken from the zero lift contours in Figure 5(b),

;
r
"

1

f K S
m#1)0o<

#:-
m#C

a
o<

#:-

.
(11)

The added mass coe$cient found from the lift coe$cient in phase with acceleration is also
given by Gopalkrishnan (1993, eq. 3.8):

C
a
"!

1

2n3

C
LA

A/DfK 2
, (12)

where C
LA

is the lift coe$cient in phase with cylinder acceleration. Thus there are two ways
of extracting data from Gopalkrishnan [directly from Figure 5(b) or by using the plot for lift
coe$cient in phase with acceleration, C

LA
, and equation (12)]. They give nearly identical

results, as shown in Figure 6. In Figure 6 the results from the present investigation are
compared to results from Vikestad et al. (1997) (which used the same apparatus with
di!erent mass ratio and tow velocities) and the coe$cients extracted from Gopalkrishnan's
experiments. The plot reveals that the added mass coe$cients found by free oscillation tests
and forced oscillation tests agree very well. For very low reduced velocities, the acceleration
amplitudes are very small, and the coe$cient is very sensitive to small errors in the
measurements. Thus, the very high added mass coe$cients found for low reduced velocities
have considerable uncertainty. There are small di!erences, especially for the important
;

r
-range between 5 and 7 where the freely oscillating system has slightly lower added mass

than the driven cylinder. This may be due di!erences in the amplitudes of motion. While the
zero-lift curve of Figure 5(a) corresponded to a maximum response of 0)82 A/D (A is the
mean cylinder amplitude of response), the free vibration maximum response was 1)15 A/D.
Also di!erences in Reynolds number may be a source of di!erence as Gopalkrishnan's were



Figure 5. Results from the driven cylinder experiments of Gopalkrishnan (1993) (printed with permission from
MIT). (a) Contours of the lift coe$cient in phase with velocity (Figure 3}14 in Gopalkrishnan's thesis).
(b) Contours of the added mass coe$cient, with the contour for zero lift in phase with velocity added (Figure 3}16

in Gopalkrishnan's thesis).
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approximately Re+104 and the free vibration experiments described here were from
1)4]104 to 6)5]104. Free surface or bottom e!ects may have in#uenced the results. One
"nal explanation of the di!erence in amplitude is the possibility of phase angle errors in
the measurement of the measured forces. A 13 di!erence in phase angle would account for
the di!erence in results for the response amplitude, which correspond to zero lift force.

4.2. TIME VARIABILITY OF ADDED MASS, WITHOUT SUPPORT MOTION

The mean added mass as a function of reduced velocity was given in the previous section. In
this section the variation of the added mass from one vibration cycle to the next is



Figure 6. Comparison between added mass coe$cients:*e*, Gopalkrishnan, C
a
; ---#---, Gopalkrishnan, C

LA
;

---h---, Vikestad et al. (1997); ----]----, Present. The results of Gopalkrishnan for zero mean lift (mean power is
zero) are found from the contour plots of the added mass coe$cient and the lift coe$cient in phase with

acceleration.
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investigated. When calculating the added mass, equation (9) was used. The number of
oscillation periods in the integral was reduced to one. A time-averaged added mass over
each oscillation period of the run was found. The acceleration amplitude needed in equation

(9) was computed from the r.m.s. acceleration as follows: u2x
0
"xK

0
"J2SD(xK )

(SD"standard deviation). The time window, which was one period long, both started and
ended with zero displacement. Figure 2 shows the time series for the acceleration and Figure
3 shows the lift force times the acceleration for a reduced velocity;

r
"8)0. (The plot is from

the "rst of the three runs at;
r
"8)0.) From the "gure one can see that the added mass is not

constant during the tow. When F
v
xK is positive in Figure 3, the added mass coe$cient is

negative and vice versa. Some questions arise concerning this variation of added mass, as
follows.

How large are the variations? If the variations are small, the change of oscillation
frequency due to this variation is limited.

Are the variations systematic in any way? As shown earlier, the mean added mass for
a given reduced velocity is fairly deterministic. Do the variations also follow a predictable
pattern?

How does the oscillation frequency vary? The mean frequency of oscillation has been
shown to correspond to the natural frequency computed using the mean added mass, see
equation (10). Is there a similar relation between the frequency of oscillation and added
mass when both are estimated from a single period of motion?

Figure 7 shows the displacement time history for the "rst run at a reduced velocity of 8)0.
It also shows a plot of the time-dependent added mass for the same run, computed using
equation (9), but integrating over single periods of oscillation. The transient start-up of the



Figure 7. Time series for the cross-#ow displacement, acceleration, and time-variable added mass coe$cient for
the "rst of the three tests at ;

r
"8)0.

Figure 8. Standard deviation of the added mass coe$cient versus reduced velocity.
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run has been excluded from the analysis. The time-varying added mass described above has
been computed one period at a time. From the inverse of time periods we can estimate an
up-crossing frequency and compare it to the natural frequency which can be predicted using
the added mass estimated for that period. The result is shown in Figure 9. In the "gure, both
predicted and measured frequency have been normalized by the mean oscillation frequency
over the whole run. The di!erence between predicted and measured frequency was less than
3)5% for all cases, demonstrating that both added mass and natural frequency change in
a consistent manner from one period to the next. Figure 8 shows the standard deviation
(SD) of C

a
as a function of ;

r
for the three di!erent tests. In Figure 10(a) the mean$one

standard deviation of added mass are plotted as a function of reduced velocity. The largest
variation is below 4 in ;

r
. In Figure 10(b) the predicted variation in natural frequency

corresponding to the measured changes in added mass is presented. The period-to-period
variation in natural frequency is shown for plus and minus one standard deviation of added
mass. The extreme values are also shown, corresponding to the maximum and minimum
values of the measured added mass.

Figure 10(a) indicates the relative variation of the added mass coe$cient. For each of the
three towing tests with identical (and constant) reduced velocity, the added mass coe$cient
maximum, minimum and$standard deviation was calculated. &&Maximum'' denotes the
mean of the three maximum values for added mass found for the three runs at each
reduced velocity. &&Minimum'' is the mean of the three minimum values. The mean value of
the added mass coe$cients over all three runs at a given reduced velocity was calculated
and plotted in Figure 10(a) with the label &&Mean''. For the &&Mean$SD'', the mean of the
three values for the standard deviation found in Figure 8 is added/subtracted from the mean
C

a
. It is clear from the "gure that the variation of the added mass coe$cient is very small for

;
r
"4)5}6. The e!ect on the &&variable natural frequency'', computed using the added mass

values found from Figure 10(a), relative to the mean natural frequency, is given in
Figure 10(b). Here we see that for;

r
from 4 to 6, the variations of vibration frequency is less

than $5%. For smaller and larger ;
r
, the variations are 10% or greater.

4.3. CORRELATION BETWEEN ADDED MASS AND DISPLACEMENT

Testing the relationship between two variables x and y by means of the correlation
coezcient o is given as

o (x, y)"
(1/n)+n

i/1
(x

i
!x6 ) (y

i
!y6 )

SD(x)SD(y)
. (13)

Let x
i
be the added mass coe$cient estimated for each period (i) of the motion. Let y

i
be the

corresponding r.m.s. displacement; x6 and y6 are the mean added mass and r.m.s. displace-
ment over the run. Figure 11 shows the correlation between the added mass coe$cient
and cylinder displacement. There is strong correlation between reduced velocities of 4}6.
The coe$cient switches sign at ;

r
+5. Outside of this range the correlation is much

lower.
The e!ect of the variable added mass on the natural frequencies of long cables or risers in

sheared #ow is not well understood. In modal analysis, the modal mass is found by
integrating over the length of the riser the product of the mass per unit length and the
square of the mode shape. It may be that the local time variations in added mass revealed in
this study may be averaged out by the integration over the length of the riser and will give
a more or less constant modal mass and steady values for natural frequencies. It may on the
other hand be that the variation in added mass may be su$cient to cause frequent changes



Figure 9. Observed oscillation frequency and calculated natural frequency based on added mass for the same
cycle reduced velocity. Frequencies are normalized using the mean oscillation frequency. (a) Frequency variations

at ;
r
"4)7; (b) at ;

r
"8)0.
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Figure 10. (a) The time-variable added mass, and its e!ect on the natural frequency. For a given reduced velocity,
the results in the plot are the mean of the results found using the three di!erent tests, e.g. the &&maximum''means the
mean of the three results for the maximum added mass for the tests. In (b) time-variable natural frequency inferred
from di!erent values of added mass. The results are normalized with the natural frequency found using the mean

added mass coe$cient at each reduced velocity.

1084 K. VIKESTAD E¹ A¸.



Figure 11. Correlation coe$cient between the variable added mass and the cylinder displacement amplitude.
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in natural frequencies and frequent changes in observed response from one mode to
another.

4.4. BEHAVIOR OF ADDED MASS IN THE PRESENCE OF AN OUTSIDE DISTURBANCE

A set of experiments were conducted to simulate vibration at one location of a long cable
due to VIV at another location on the cable with di!erent #ow velocity and di!erent
vortex-shedding frequency. The motion frequency introduced by the support motion ( f

%9
)

simulated the vibration caused by VIV at a di!erent location. The test cylinder was also
allowed to respond to vortex-related lift forces (frequency f

v
). When the support motion and

VIV frequencies were di!erent it was possible to estimate from the measurements the added
mass coe$cient associated with the VIV response frequency by using equation (9). The
frequency components of the support motion were "ltered out from the lift force and
the acceleration measurements using a frequency-domain narrow-band "lter, centred on the
support frequency.

Contour plots of the estimated added mass coe$cient at the VIV frequency f
v
are given in

Figures 12}14. There is one plot for each of the three support motion amplitudes. At zero
frequency in still water static support motion amplitudes of 2, 4, and 6 cm caused 0)128A/D,
0)256A/D, and 0)385A/D static displacements of the cylinder. The horizontal axis in the
"gures is the reduced velocity based on the natural frequency in still water. The vertical axis
is the ratio of the support motion frequency f

%9
to the VIV frequency observed without

support motion f
04#

, see Figure 4(b). The contours for added mass equal to 0)0 and 1)0 are
marked with thick, approximately vertical lines. Negative added mass is noted with dashed
lines. The very thick lines mark the &&disturbance controlled VIV'' region. This region is
de"ned by the frequency ratio

f
3!5*0

"A
xK
#:-3.4

x
#:-3.4
B
1@2

A
xK
4613.4

x
4613.4
B
~1@2

"

f
461
f
%9

, (14)



Figure 12. Contours of C
a
at the VIV frequency, f

04#
for 2 cm support motion amplitude, as a function of reduced

velocity ;/( f
0
D) and external excitation frequency normalized by the mean oscillation frequency for undisturbed

VIV, f
04#

(see Figure 4(b) to see f
04#

as a function of reduced velocity). The very thick lines show the limits for
the region where the external excitation controls the oscillation frequency (see equation (14) for the de"nition

of the region).

Figure 13. Contours of C
a

for 4 cm support motion amplitude. See Figure 12 for detailed information.
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Figure 14. Contours of C
a

for 6 cm support motion amplitude. See Figure 12 for detailed information.
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which is the dominant cylinder oscillation frequency divided by the support motion
frequency. When this frequency ratio is close to 1)0, the support motion controls or
reinforces lock-in behavior of the cylinder. When the cylinder has signi"cant VIV response
which is di!erent from the support motion frequency, the support motion may interfere
with lock-in behavior. In Figures 12}14 the limits f

3!5*0
"1)1 (the lower line) and f

3!5*0
"0)9

(the upper line) have been chosen to represent the boundary between reinforcement and
interference. The added mass coe$cients at VIV frequencies in the reinforced or controlled
region are discussed in Vikestad (1998). The main result shown in Figures 12}14 is that the
added mass coe$cient as a function of reduced velocity is similar to the &&no support
motion'' case when the support motion does not control the response. The shift from
positive to negative added mass at;

r
"8, and the value of C

a
"1)0 in the region;

r
"5}6

are the same as found for a freely vibrating cylinder. When the support motion controls or
reinforces the frequency of vortex shedding, the response of the cylinder may be quite
di!erent from the free vibration response without support motion. The behavior is quite
complex and is discussed in some detail in Vikestad (1998).

5. CONCLUSIONS

From the present results we have found the following.

(i) The added mass coe$cient found in free vibration tests for lightly damped cylinders
corresponds well to that found by others in driven cylinder tests.

(ii) In the absence of support motion the variation of the added mass from one vibration
cycle to the next can be considerable. The variation is least for the reduced velocity range
of 4}6.

(iii) In the absence of support motion, the cycle to cycle variation in added mass is closely
correlated to a time variation in response frequency, which is interpreted as an added
mass-dependent variation in the natural frequency of the cylinder.
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(iv) With support motions, the added mass coe$cient at the vortex-shedding frequency is
a function of reduced velocity and the excitation frequency ratio f

%9
/f
04#

.
(v) With support motion, the added mass coe$cient is not strongly in#uenced by the

support motion, as long as the vortex-induced response frequency is su$ciently di!erent
from the support motion frequency. This region of behaviour has been mapped out in this
paper.
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